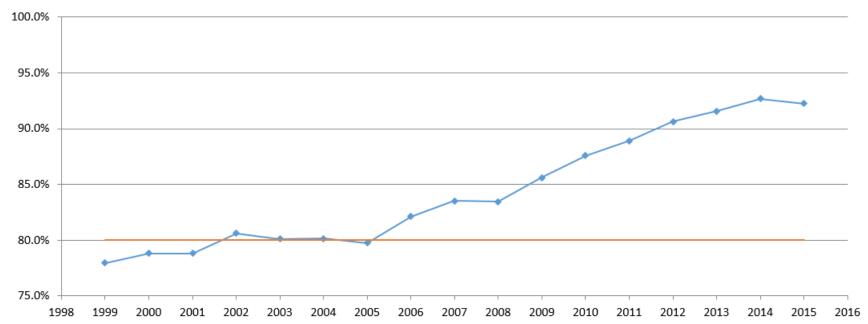


Using data as a leading indicator and predictive forecasting for Florida's Pavements

Javier Ponce

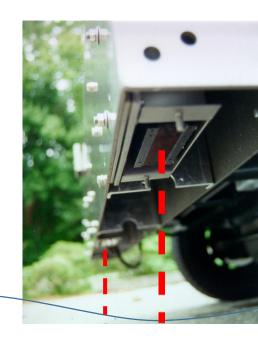

Pavement System Specialist

Florida Department of Transportation

Pavement Condition Survey (PCS)

- PCS data have been collected since 1976.
- Since 2006 we have surpassed the 80 % performance standard per FL Statute.

Percent of State Highway System Meeting Standards


The PCS rates pavements using three indices.

CRACK RUT RIDE

- The rating scale for the PCS is from 0 (worst) to 10 (best).
- A rating under 6.5 in most cases is considered deficient.
- A collective analysis of all pavement segments demonstrates if the Department is meeting standards.

PCS Collection

- PUBENICATION STEEL STEEL
- April 1 December 31 annually.
- State Materials Office gathers the Data.
- 5 Primary Vans and 4 Full Time Raters.
 - High speed profiler.
 - Daily calibrated.
 - Consistent data surveyor per district.
- FDOT PCS COLLECTION HANDBOOK

PCS Overview

- Quantity of Data: over 9200 rated pavement historical dynamic sections.
- The PCS Data are incorporated with:
 - Roadway Characteristic Inventory (RCI):
 - Traffic, number of lanes, on/off system, etc.
 - Work Program:
 - Past and future pavement improvement projects.
 - Construction pay items
 - Friction course type
 - Etc.
- Published April 1st every year.

Pavement Management Data

- Maintain accountability of the department's assets.
- Forecast Segment, District, and Statewide deterioration.
- Develop a Resurfacing Program that meets a pavement performance goal.
- System Behavioral analysis.

2015 PCS Overview

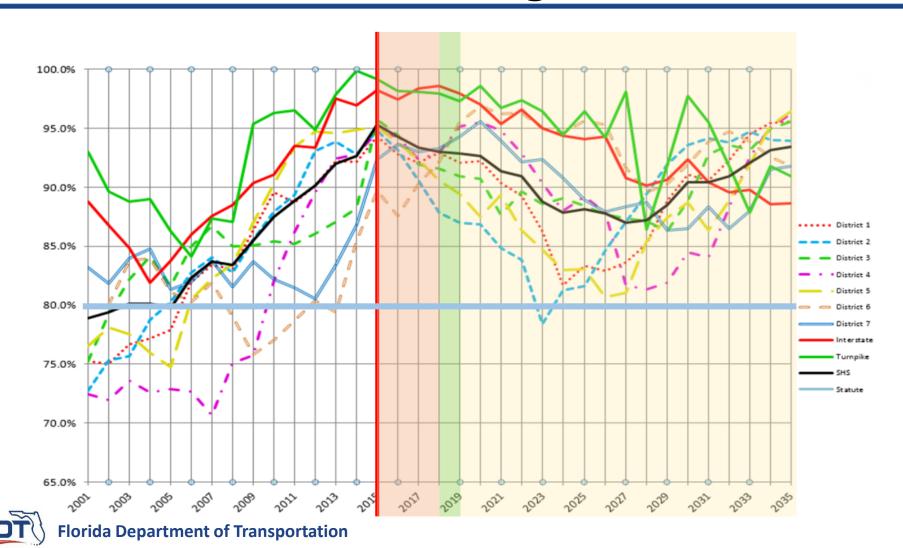
- 43,593 Total Statewide LM
 - 3,373 Deficient LM → 7.7% Deficient

	Arterial		Interstate		Turnpike		
	Lanemiles	Percent	Lanemiles	Percent	Lanemiles	Percent	
Districts	Deficient	Deficient	Deficient	Deficient	Deficient	Deficient	
1	459	9.1%	20	1.8%	0	0.0%	
2	545	8.7%	12	0.6%	0	0.0%	
3	634	11.1%	70	7.0%	0	0.0%	
4	307	7.3%	9	0.6%	0	0.0%	
5	377	6.3%	188	12.3%	0	0.0%	
6	278	11.0%	88	38.1%	3.53	1.4%	
7	368	10.6%	14	1.7%	0	0.0%	
Percent Deficient	8.9%		5.0%		0.2%		

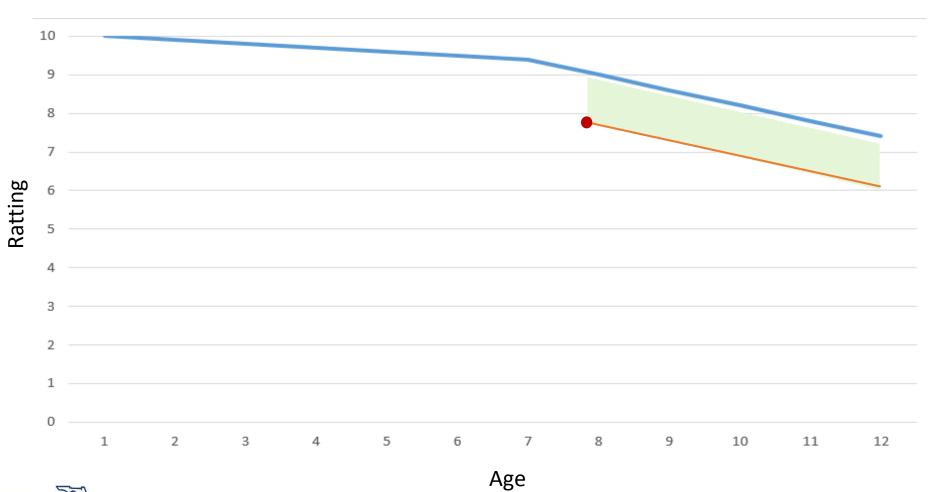
Resurfacing Work Program

	Current	Programmed	mmed New Programmable		Possible Future		
	Year	Year	Year	Programmable Scenarios			
2014	2015	2016 2017 2018	2019	2020	2021	2022	

- Focuses on the New Programmable Year.
- Florida's Analysis System for Targets (FAST).
 - Forecast of a total system allows analysis of lane mile target allocation scenarios designed to meet desired goals using the most recent PCS data.
 - District, Section and System Analysis.

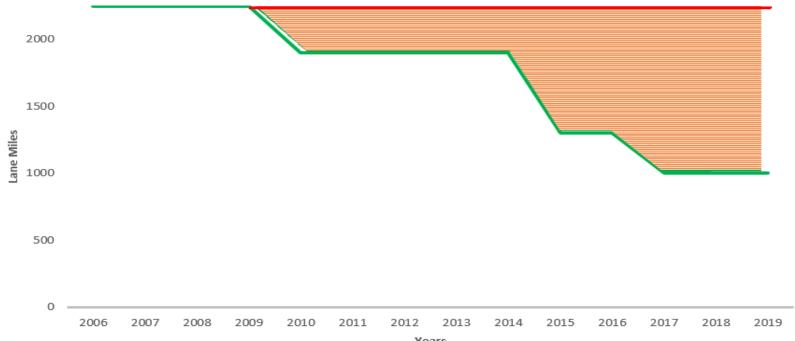

FAST

- Improved section level condition forecasts of the SHS.
- The ability to calculate future resurfacing allocations based on forecasted conditions.
- Prioritized list of candidate resurfacing projects.
- Impact analysis for different funding scenarios and policy decisions.
- Predictive equations based on the historical performance of pavements in each District are used to predict the performance of pavements within that District.


What if?

- Answer frequently asked questions from the Executive Level as well as the Districts:
 - What have been the impacts of previous decisions?
 - Were the underlying assumptions valid?
 - If we take a specific action what is the expected impact?
- Examples:
 - Reducing or increasing percent of resurfacing Statewide.
 - Changes in materials and its overall impacts.
 - Changes of how contracts are administered and its overall impacts.

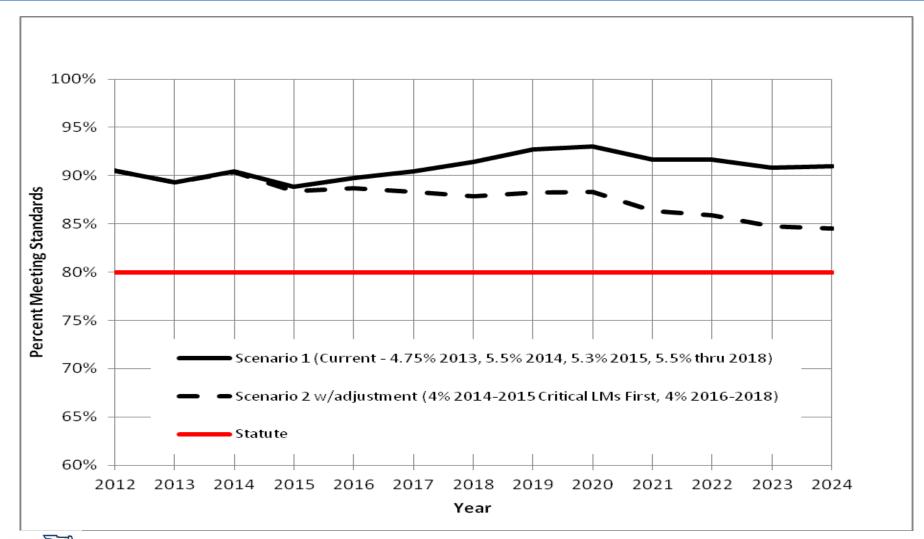
Historical and Predicted Percent of Lane Miles Meeting Standards

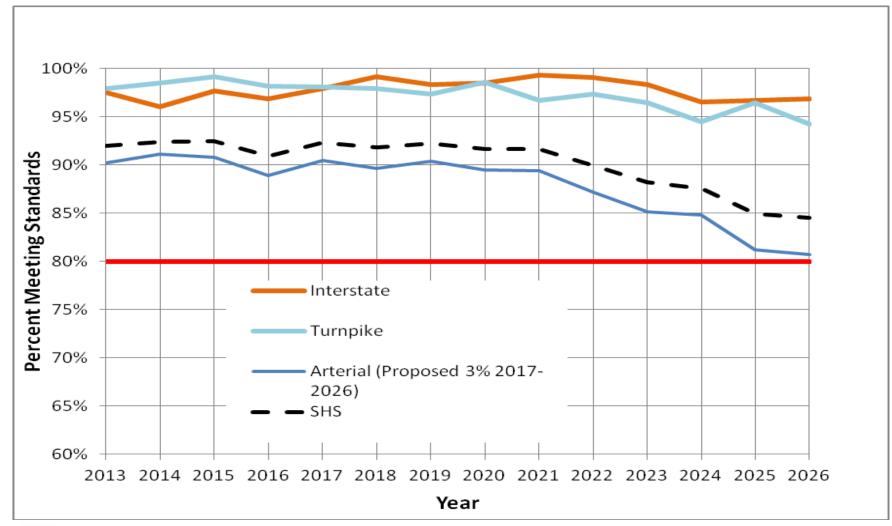


Forecasting from the Master Curve

Impact of accurate Data and Forecasting

 In the past 10 year work program, Florida's Resurfacing program has reallocated roughly 7400 lane miles. (\$ 3 Billion)




Benefits of Forecasting with FAST

- The data does not require to have an extensive historical representation for every section.
- Annually calibrated, section level detail provided by FAST allows the effects of research and development initiatives to be directly quantified for the future.
- Analysis of pavement behavior allows for better allocation of funds and resurfacing decision.

2012 Scenario Analysis

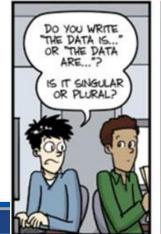
2013 Scenario Analysis

Pavement Management Reports

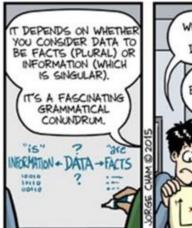
- Pavement Condition Report
- PCS Cycles
- Mix Designs
- As-Build Reports
- Coring Report
- Surface Types

- Material Information
- Rutting and Ride Reports
- CQR: Lab Report Info
- Bid Tonnage
- Project Overlap
- Quantity and Cost Information

These and many other Reports that aid Pavement Managers in asset management can be viewed in the Pavement Management INFONET Site.



Using data as a leading indicator and predictive forecasting for Florida's Pavements


Questions?


Thank you!

Javier Ponce

